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The asymptotics of a large evolution time of homogeneous turbulence in a density-stratified medium is 

studied. It is shown that the presence of stratification substantially changes the attenuation rate of turbulence 

kinetic energy and other turbulence characteristics and forms asymptotic regimes which differ from the case 

of an isotropic medium. The effect of the molecular Prandtl number on the final stage of turbulence decay 
is studied in detail 

We consider the evolution of turbulence generated by a turbulizing grid in a medium with a uniform velocity 

field in the presence of a constant transverse density gradient caused by a gravity force field. 

Modeling of the evolution of homogeneous turbulence in a density-stratified medium is one of basic test 

problems on which modern turbulent models of a scalar field are studied and verified. On the other hand, this 

problem has a certain practical value for studying turbulent transfer in ocean and atmospheric flows where gravity- 
induced transverse stratification usually exists. 

We analytically studied a model of homogeneous turbulence in a density-stratified medium [ 1 ] that was a 

particular case of the more common second-order model of moments [2 ]. In earlier works [1 ] the model was studied 

in detail. It is shown, in particular, that this model describes the generation and propagation of internal turbulent 

gravitation waves, as a result of which at the final stage of decay the characteristics of turbulent velocity and density 
fields substantially differ from the case of an isotropic medium. 

The study of an asymptotic regime of turbulence decay for �9 -, oo provides information about whether the 

field of turbulent oscillations in a stratified medium should be plane at the final stage of decay, what portion of 

the turbulent energy is contained in the internal gravitation waves, and how a wave interacts with small-scale 
random oscillalions (see [1 ]). 

In a previous paper [3 ] the evolution of turbulence at large r was considered analytically by the small- 

parameter method. Mathematical systems which corresponded to fluctuations and fluctuation-averaged quantities 

were distinguished and analytical relations for the frequency and amplitude of the internal turbulent gravitation 

wave were obtained. In what follows we study the final stage of the decay of turbulence evolution, which can be 

treated as the far-field limit considered earlier [3 ]. This study should provide values of the model functions that 

are limiting for r --, oo, the rate of convergence on these asymptotic values, and the dependence of this rate on the 

Prandtl number. 

In [3 ] the system of differential equations of the model of [ 1 ] is reduced to the form 

f 

dK - 7d ( K -  1/3) 
t ~ = e R + 2 e q ( K -  4 / 5 ) ,  

dR 4 
t-~-- z = e 5 d ( l  - R/Roo ) -  2eq(1 - a 2 R  ) R  

t-dT= 2e - 1 0 + 2 e q ( l  + 0 ) ,  
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d q =  [ 1 ( _ ~ )  p ] 2  10d 'K - + t-d- ( t2Al + eq - - a I + 2eq 2 , 

dt dE  2eE 
- -  = ep , t - -  = 2eqE 
dr dr R ' 

(1) 

where d = d(R~) = 1 - 2 / (1  + q l  + 6u /R~)  is the parameter  of different scales in [21; d E (0,1); d' = 1 - d; 

8 u = 2800;  a** is the asymptotic value of the turbulent Prandtl  number  when r -~ m a n d  Fr = 0; R|  is the asymptot ic  

value of the ratio of scales T u / T  p when T -,  ~ and Fr = 0; al = 2d(a| + 3 /5) /R**;  a 2 = ( a / ( a  + 1))al;  p = 

4d/5R** + 5d' /3R > 0 a n d  

A 1 = K + 0 [ d ( K -  1/3)  - 2 / 3 1 .  (2) 

The  asymptotic values of a| and R| are taken from [4 ] 

( 
= loo.  1 -  j ' 

(3) 

l[ ][ ], R** = " ~  1 - ~ + cr 3/2 1 - 2 ~ + a 1/2 (4) 

Since the kinetic energy of turbulence E enters into the first five equations of system (1) only in terms of 

the parameter  d, it is convenient for analysis to consider the equation for d(R~), which is easily obtained from (1): 

t dr - epl 2 (2 - a2R ) q , (5) 

where Pl = - d d ' / ( 1  + d) is the logarithmic derivative of d with respect to R~. 

We consider the final stage of turbulence decay for ~r --- oo and RX << 1. The  equation for q degenerates  in 

the far field to an algebraic one Al = 0, which is fulfilled with a high degree of accuracy. In the vicinity of 

asymptotically weak turbulence the parameter  d(Rx) is close to unity. When d -.* 1, t >> 1, system of equations (1) 

a n d  (5) can be written in the form 

4 t d___KK_ 7 d  ( K -  1 /3)  + 2 q ( K -  4 / 5 ) ,  
5 R ~  dt R 

4 t dR 4 (1 - R / R ~ )  - 2 (1 - a2R ) Rq 
5 R~  dt - 5  

K + 0 ( d ( K -  1 / 3 ) -  2 / 3 )  = 0 ,  (6) 

4 t d O  
5 R~  dt 

- 2 ( R  -~ - 1 )0  + 2q(1  + 0 ) ,  

4 t d ( d )  d '  [ 6 R - 1  ] 
5 R~  dt = - 2 -  - 5  - 2 ( 2 - a 2 R )  q " 

We present the solutions of system of equations (6) as the sum of their asymptotic values when r ~ ~ (we 

designate them by subscript A) and of additions tending to zero when t ~ 00 (we designate them by the same letter 

with a prime). We seek these additions in the form of functions of t that decay exponentially: 
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, , Cit-fli f=fA +f , f = , (7) 

where the subscript i takes values of K, R, 0, q, d, and f is one of the functions of K, R, 0, q, d. In o rder  that the 

f u n c t i o n / i n  (7) can decay, it is necessary that all exponents fli be positive. 

As K, R, 0, q, d tend to their  asymptotic values, the derivatives on the lef t -hand sides of system (6) tend 

to zero. Thus,  the asymptotic values satisfy the system of algebraic equations 

4 
0 = 2q A (K  A - 4 / 5 ) ,  0 = ~ (1 - R A / R , ,  ) -- 2 (1 -- ct2RA) R A q A ,  

0 = 2 (-~A -- I) OA + 2qA (I + OA) , KA + OA (KA -- 1) = 0 .  

(8) 

It is obvious that equality to zero in the first line of (8) is possible in two cases: A) at qA = 0 and B) when 

qA ~ O. In the latter case, KA = 4/5 .  We also distinguish the subcases A1) qA = 0, 0 ;~ 0 and  A2) qA = O, Oa = O. 

In case A1 we find from system (8) successively (from Eq. (8), in parentheses above the equal sign) 

(1) (2) (4) (3) (2)__,(3) 1 
qA = O,  R A = R~o , 0 A = K A / ( 1  -- KA)  , R A = 1 , Roo �9 (9) 

The value of Ka remains undetermined,  since at R a = R,, = 1 the pair from the second and third equations 

in (8) is degenerate.  The  asymptotic value of R| which is equal to unity,  and, consequently,  case AI correspond 

to the molecular Prandtl  number  a = 1. 

In case A2 we obtain, respectively 

q A ( 2 0 '  g A(2=)goo, KA(4)  O '  0 A = 0 ,  (10) 

and in case B 

(3) 4 1 ) (04 (4--)4 q A = ' ~ ( 1 - - R A  (II) K A = "~, 0 A , 

where R A is determined as a root of the quadratic equation 

2 (  
a 2 R  A -- 1 + ct 2 + 

and ct 3 = 4 d /S R |  The  selection of the root of (12) and 

and (11) correspond will be considered later. 

,) 3 
-~Ct 3 g A + "~ = 0 ,  (I2) 

the ranges of a to which the asymptotic values from (10) 

We introduce equations for the above-mentioned additions, i.e., the primed functions. For this purpose we 

subtract te rm-by- te rm relations (8) from (6). Then it is necessary to linearize this system of equations, discarding 

the quadratic terms. Depending on the considered case, A1, A2 or B, we obtain different systems.  

For case A1 after  linearization 

r 

, , 4 dR 4 
5 t 4  dKdt - 7d (K z - 1/3)  + 2q (K a - 4 / 5 ) ,  ~ t dt - 5 ( -  R')  , 

4 dO' - 2OAR' + 2q' (1 + OA) ~ t  dt = 

(1 + OA) K'  + O' ( K  A - 1) - d '0 A ( g  A -- 1/3) = 0 ,  

(13) 

4td(dat  ') = -  (3 /5 )  d '  
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For case A2 

4 t dK' 7 d '  8 
1) 5 R~ dt - 3 R~ 5 q' '  

r 

4 t dR 4 
2) 5 R,~ dt ~ - 5 R ' /R |  - 2 (I - a2R| R| 

4 t d0' 2 (R_ ~ ) , 4 t d ( d ' )  3d'  
3) 5R--~ d--t-- - l 0 + 2q ' ,  4) K ' - O '  = 0 ,  5) 5R** dt - 5R**" 

And, finally, in case B the system for additions will have the form: 

f 

4 t dK 4 9  , 8 

s R |  dt - 

4 t dR' 4 ( 1  - RA/R| d'  4 5 Rm d t  ~ - 5 - 5 ( R ~ I  + 2 ( i  - RA 1) (1 - 2 a z R A )  ) R A ,  

- 2 (1 - ct2RA) RAq' , 

(14)  

(15) 

-SR| dt - 5  - 1 0 ' + l O q ' - - - - ~ R ' ,  
RA 

' 2 8  , 5K - 0' /5 - --(-( d = O, 

54 tR| d(d')dt =-2-d'{ 5RA6 2 ( 2 _ a 2 R A )  4 ( I _ R ] l ) ) 5  . 

We consider alternately cases A1, A2, and B, which are described by systems (13)-(15). When solving 

these systems one should allow for the fact that the equations entering into them are valid with the accaracy up to 

discarded terms of a higher order of smallness. The discarded terms are trivally small when t--, ~ .  However, 

depending on the values of the exponents flu the auxiliary terms in these systems can become small. This fact 

should be taken into account in asymptotic analysis. We carry out this analysis using symbols of the degree of 

convergence on an asymptotic value, which are defined as O(.f') = d (ln f ) / d  In t. 

In case A2, functions K' and 0' are equivalent. Therefore, we exclude O' from consideration. It follows from 

the fifth equation of (14) that O(d') = - 3 / 4 .  The second equation in (14) is separated from the system. We find 

from the third equation of (14) that O(K') >__ O(q'), otherwise the function 0' disappears from the system and the 

system becomes contradictory. When the strict inequality O(K') > O(q') is fulfilled, in analyzing the first equation 

one should recognize that O(K') = O(d') = - 3 / 4 ;  however, this order of K' decrease does not correspond to that 

in the third equation, since O(K ) = 0(0') = 5/2(R~ - 1). Consequently, we conclude that O(K') = O(q'). The order  

of O(d') smallness in the first equation can be smaller than the order of q' or equal to it, O(d') <_ O(q'). We consider 

these versions separately. 

Case A2a: O(K ) = 0(0') = O(q') = O(d') = - 3 / 4 .  
Substituting the assumed solutions 0' = K' = CK t-3/4, q' = Cqt -3/4, d' = Cd t-3/4 into the first and third 

equations of (14), we determine the ratio of the coefficients CK/Cq and cd/cq 

( 13 24 
CK/r  q = r = 1 IOR~) ' Cd/Cq = -- CK/r + " ~  R~ (16) 
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It follows from the second equation of (14) that O(R') ,- O(q'), since, otherwise (O(R') > O(q')), the 

exponent of O(R') = - 1  from the first equation of (14) turns to be smaller than that of O(R') = - 3 / 4  and the 
assumption is inconsistent. We find the ratio cR/cq from (14) 

c ~ / c q  = IOR~ (1 - ~ 2 R * * ) .  (17) 

The coefficient Cq remains undetermined. 

Case A2b: O(K') = 0(0') > O(d'). 

When t --- 00 the function d' degenerates to zero more rapidly than the other functions. Replacing O' by 
i 

K in the third equation of (14) and eliminating q' from (14-1) and (14-3), we obtain 

(18 )  10 
o (K')- = - y ( R =  - 1 ) .  

The degree of convergence on zero for the additions is determined by the first equation of (14) and is equal 
to 

l f l  
(19) /~1 = - ~  (R |  - 1 ) .  

From Eqs. (14-1) and (14-3) we obtain the relation 

, S (I - Ro,) K '  (20) q = ~  

Substituting the assumed exponential relations with the exponent - f l i  into system of equations (14), we 
find the ratios CK/Cq, CR/Cq: 

2 S (1 -- a2R~) R~ (21) 
CK/Cq = ~1 R~ , CR/C q = ---~ (1 --/31) 

We complete the consideration of case A2 by comparing the expressions for two different versions: A2a and 

A2b. The exponent fit > 0; therefore, we conclude from (19) that R| > 1. On the other hand,  fit < r2  = 3/4; 
otherwise, discarding of the term with 4' in (14-1) at large t will be unjustified. At small cr, the exponent 

fll > 3 / 4  and version A2a is realized; starting from some threshold value of a01, which is determined by the relation 

1o ( R .  (ao~) - 1) = - _3 
9 4 '  

version A2b is realized. 

Cases B and AI are analyzed by approximately the same scheme. Omitting details we note that, as in case 

A2, two versions are possible for case B, which will be called B1 and B2. In version B1 

(22) 

and in version B2 

O(K ' )  = O(0 ' )  = O(R ' )  = O(q ' )  > O ( d ' )  

O (K ' )  = O (0') = O (R') = O (q') = O ( d ' ) .  (23) 

In case B1 the degree of convergence on zero of the corrections is determined by the first equation of (15), 
since the function d' disappears from it. Designating O(K') = O(O') = O(R') = O(q') = - f l ,  we find that 

/31 = - 2R~ (1 - 1 /RA) .  (24) 
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The asymptotic value of the ratio of time scales of the velocity field and the scalar field R a is determined 

for case B from the solution of quadratic equation (12). According to the Vieta theorem, both roots of this equation 

are positive. We write the solution of Eq. (12) at d = 1 

1 1 1 ~/(1 + a 2 + I /2R**)  2 - 6a  2 (25) 
RA = -~2 + "~ + 4Ro*o~-------~ 4- 2ct2 

and  require  f rom its physical  mean ing  tha t  its d i scr iminant  D > 0. We t rans fo rm D 

D = (1 - a 2 + I / 2 R o , )  2 + 2a  2 ( 1 / R , ,  - 1).  

Thus ,  D > 0 if Ro, < 1. This  fact indicates that  case B refers  to the values Roo(a) < 1 and ,  consequen t ly ,  

to molecular  P rand t l  num be r s  a h igher  than  unity.  

For/51 > 0 it is necessary  that  R A - 1 < 1 in (22). It follows f rom equali ty (25) tha t  

2a 2 (R  A - 1) = (1 - ct 2 + 1 / 2 R |  _ x/ (1 - a 2 + 1/2Roo) 2 + 2o: 2 ( 1 / R |  - I)  < 0 ,  

f rom which it is seen that  the root in (25) should  be taken with the minus  sign. Thus ,  the cr i ter ion for  select ion of 

one of the roots  of  quadrat ic  equat ion (12) is ob ta ined  for b ranch  B1. 

For  the second  branch ,  B2, the exponen t  is equal for all funct ions:  O ( K ' )  = 0 ( 0 ' )  = O ( R ' )  = O(q ' )  = O ( d ' )  

= -/52, with the exponen t /52  being de t e rmined  in this case f rom the  equat ion for  d' of sys t em (15),  i.e., when  

d-- ,  1, f rom 

4 3 (2 - a 2 R A )  4 
5R~, /52 = 5 R  A "~ (1 - 1 / R A ) ,  

f rom which it follows for/52 that  

32= + (2 -- ct2RA) ( g  A - 1)) . 

T h e  exponent /52  is positive, thus giving 

a2 R 2  -- R A (2 + a2 )  = 5 / 4  < 0 .  

Subt rac t ing  equal i ty  (12) f rom this inequal i ty  at  d = 0, we obta in  the  inequal i ty  

- 1  
R A > 4 - 2 R ~  " 

which is obvious for  0 < R| < 1. 

Thus ,  it is proved that/52 > 0 when  Roo < 1, i.e., in the case of media  with a molecular  P r and t l  n u m b e r  cr 

h igher  than  uni ty .  T h e  express ion  for t52 can be wri t ten in a shor te r  fo rm as 

/52 = R oo 1 - 2R----~ + " (26) 

If this value of f12 is h igher  than  t51 f rom (24), then  branch  B1 is real ized,  since in this case O ( d ' )  < O ( K ' ) .  T h e  

inequal i ty  f12 -< t31 or  R A <_ 7R~(12Roo - 2) serves  as a cond i t ion  for  the rea l i za t ion  of b r a n c h  B2. W h e n  a = 1 

(Ro~ ~ 1), and  R A = 1 this condi t ion,  as is easily seen,  is not satisfied.  With an  increase  in the P rand t l  n u m b e r  

f rom uni ty  to some t rans i t ion  value at2 = 1.7, b ranch  B1 is real ized,  and  f rom crt2 to a -- oo, b r anch  B2. For  b r anch  

B2, as for b r a n c h  BI ,  R A - 1 < 0, i.e., one  should  select the root of (12) with the minus  sign. 
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Fig. 1. Dependence  of exponen ts /5 ,  i l l ,  f12, asympto t ic  ratios of t ime scales 

RA a nd  R| a nd  mass flow qA on the molecular  P rand t l  number :  l ) /5  -- rain 

~1 , /52) ;  2)/51; 3) f12; 4) RA; 5) R~,; 6) qA. 

Subst i tu t ing the a s sum e d  exponent ia l  solutions to sys tem of equat ions  (15), we ob ta in  for  the  coefficients 

with these  exponents :  

in case B1 

c, , [ 
- _ 1 +  

Cq 5 (R A 1 _ 1) R A [(1 - a 2 R a )  -1 - 2ill ' 

C O C K c R 5 R A R  = 
- - =  25 , - -1 ' 
Cq Cq Cq 2 (1 - a2Ra)  -- 9.it 1 

(27) 

in case B2 

C-._R_ R = a4a5 -- a 3 c d = al -- a2a 4 

Cq a4a 5 -  a2a 3 '  Cq a la  5 -  a2a 3 '  

CK Cd C O - - (  2---~) cd (28) 
Cq - a6 Cq ' Cq 2 5 a 6 - - -  Cq ' 

where  

15 1 4 R A 5 
a I = -- 3 + - -  - -  , a 2 -- , a 3 = 1 -- , a 4 = -- -- (1 -- a2RA)  R A , 

4R A 2Roo 5R2A R| 2 

( 3A) (28) a 5 =  - 1 + 1/R~o 2R a 6 - 7 - 5  ' a 6 =  - 9 8 / ( -  72 + 42RA 1 + 12R~,1).  

We cons t ruc t  a g raph  of the dependence  of the asympto t ic  degree  of convergence  on zero  of the  correct ions  

on the molecular  Prandt l  number .  For  both cases of A2 (versions A2a and  A2b) and  of B (vers ions BI and  B2), 

which describe,  cor responding ly ,  Prandt l  num be r s  cr < 1 and  cr > 1, the exponent  f lA is d e t e r m i n e d  as/SA = min 

(/51,/52), where/51 depends  on the rate  of change  of funct ion K' ,  and/Sx, on the rate of c h a n g e  of funct ion  d' .  

Figure  1 presents  curves of the exponents  /51 and  /52 and the resul t ing exponen t  fl versus  the P rand t l  

number .  When  cr --, 1 and  a --, oo the exponent  fl --, 0. Here  the change  in the ratio of t ime scales with the  Prand t l  
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Fig. 2. Dependence of exponents fl on the molecular Prandtl  number: 1) fie; 

2) flQ'/E; 3) flQ'; 4) flQ. 
number  is also shown for the isotropic case Ro,(cr) (formula (4)) and with allowance for stratification Ra(cr) 

(relations (10) and (25)). The  difference of the ratio R A from the isotropic R| starts to manifest  itself as cr 

increases from cr = I. When  or-,  oo the value of Ra tends to about  0.15 and R~ to 0.20, so that  the ratio 

RA/R** -~ 3 /4 .  Figure 1 also presents the change in the asymptotic value averaged over the oscillations of the 

transverse mass flow qA (relations (I0) and (1 I)) .  When a > 1 a turbulent mass flow qA is formed which differs 

from zero and which for a -,  ao attains a value of about - 6 8 / 1 5 .  The  fact that for a < 1 qA = 0 and for a > l 

qA ~ 0 means, according to the definition of the dimensionless flow q, that when cr < 1 the difference in the decay 

exponents Q and E is less than unity and when a > 1 it is equal to unity. 

We now consider how the kinetic energy of turbulence and its components decays. For this purpose we substi tute 

the asymptotic values of RA and qA into the equation determining the degree of kinetic energy decay from system 

(1) 

tdE 2 
Edt  = - p (R-1  + q ) ,  

which yields 

tdE 
fiE = Edt  = 

5 / 2  when a <  1,  
(29) 

For an asymptotically large Prandtl  number  a >> 1 the values of Roo and a~o are equal to 0.2 and 0.164, 

respectively. The  value of R.  calculated from (12) is equal to 0.15 and RA/R~o = 3 /4 .  The  degree of convergence on 

zero of the kinetic energy of turbulence when t -*  oo and a >> 1 is thus equal to limflE ~ 1 (Eq. (29)),  which is 
G - - ~  OO 

considerably smaller than the exponent  5 /2  in the first line of (29) when a < 1. In Fig. 2 a graph of the exponent  of 

kinetic energy decay f ie  versus a is constructed. As a changes within the range of from 1 to about 103, f ie  varies 

smoothly from 5 / 2  to unity. 

The  exponential  relation 

E = EO t-~E 
(30) 

which corresponds to the expression for the exponent fiE, is in good aggrement with the numerical calculation [1 ] 

(Fig. 3a). 
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Fig. 3. Comparison of calculation by analytical relations (curves) with the 

numerical calculation [1 ] (points): 1) formula (7) for air; 2) (7) for water; 

3) ~9 from [1] for water; 4) formula (25) for water; a) E(~'); b) K(~); c) 

R(t"); I) a = 800, Fr = 3 .67 .10-2;  II) a = 0.73, Fr  = 2.64.10 -2. 
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Fig. 4. Comparison of calculation by analytical relations (curves) with the 

numerical calculation [1 ] (points): 1) formula (15) from [3]; 2) exponential  

relation (7); 3) formula (31); 4) formula i l l ) ;  a) for air Ca = 0.73; Fr = 

2 .64 .10-2) ;  b) for water (Ca-- 800; Fr - -  3 .67 .10-2) .  

When a > 1 the components of the kinetic energy of turbulence RII ,  R22, and R33 decay at  the same rate 

as does E. At the initial stage of decay the kinetic energy of turbulence E is mainly de termined  by its vertical 

component R22. Pumping of the kinetic energy of turbulence from the potential energy of the scalar turbulent  field 

is first performed for the component R22, from which it is then redistributed to the other  components.  

When a < 1, E and R22 decay at different rates. The  degree of convergence on zero of the component  R22 

is flR22 = fiE + ilK, where fiE is found from (29), flK = min (O(K'),  3/4 ) ,  and O(K') is given by (18). Since 

flK > 0, the component of the energy of turbulent oscillations R22 decays more rapidly than the turbulent  energy 

E. The  field of oscillations becomes, accordingly, plane when a < 1 at the final stage of decay and consists of 

oscillations towards orts 1 and 3. 

We analyze various analytical relations for q. Differentiating the third equation in (8) and  then developing 

the values of the derivatives from system (6), we obtain for the flow q 

q = _ ( 1 / n -  1 ) ( K -  1)O 
(1 + 0) ( 2 K -  9 /5 )  ' 

which is a particular case of (16) from [3 ] for d --, 1 and P] -" 0. Employing the fact that at d -- 1 from Al -- 0 there 

follows the relation K -- 0 / ( 0  + 1), we eliminate 0 from the latter relation 

( 1 / n  - 1 ) ( K -  1 ) K  (31) 
q = - 2K - 9 / 5  

Just as expression (15) in [3 }, relation (31) is universal with respect to the Prandtl  number  and is fulfilled 

satisfactorily (Fig. 4a) for air not only in the final, but also within the entire far field. For water (Fig. 4b) this 
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correspondence is also present, but it is poorer, due to the much slower convergence of the parameter d on unity. 
This is proved by a comparison of relation (31) with the more general expression (15) from [3 ] for q (Figs. 4a and 

4b). We recall here that for air with a ffi 0.73 an asymptotic version A2b is realized, where the function d' decays 

more rapidly than the others in system of equations (6), and for water with c r  = 800 it decays at the same rate as 

the other functions converge on their asymptotic values. 

Agreement of the exponential solution in the case of water with the numerical calculation exists only when 
V> 1011 (see Fig. 4b). At the same time, functional relation (1 I) is approximately fulfilled for the entire far field. 

For air, the exponential solution is in rather good agreement with the numerical solution. The coefficient Cq in 

exponential relation (7) is found from the numerical solution when t -, | Having determined cq, one can calculate 
(using (21) for air and (28) for water) the coefficients of the exponential relations and the other considered 

functions and compare them with their numerical solutions. 

In Fig. 3b, this comparison is performed for the portion K introduced by transverse oscillations to the 
kinetic energy of turbulence. For air, the region of correspondence of the exponential solution (7) to the exponent 

(19) and the coefficient of exponent (21) to the numerical solution [1 ] is wider than for water with the solution 

determined by formulas (7), (26), (28). In the case of air, the exponential relations at the final stage coincide for 
the functions K and O; therefore, Fig. 3b also presents the data of the numerical solution for the function 0. In this 

case, rather good agreement is also noted. 
The ratio R for air calculated by the exponential law (Fig. 3b) is practically in precise agreement with the 

numerical solution. For water, the agreement with the exponential solution begins only after ~'= 1015. Formula (25) 

for the asymptotic limit of R a has a wider applicability range. 
Having found the asymptotic values of all the functions, one can calculate the frequency of oscillations and 

the decay rate of their amplitudes in the final stage. For this purpose, the results of [3 ] are used. There are no 

oscillations in degenerate system of equations (6). It describes the behavior of functions averaged over internal 

gravitation waves (see [3 ]). 
Thus, for angular frequency co, from relation (19) in [3] when d ~ 1 we have 

co = ( 2 ( 1 + 0 )  - 2  . 

Formula (32) can be even more simplified by allowing for the fact that in the final stage of decay it follows from 

.41 = 0 that 1 + 0 = (1 - K) - l ,  from which we obtain the dependence of ~o only on K 

co - 1 ~  ' 

which in the case of a medium with a < 1 leads to the asymptotic value 2 = 18/5 ,  and with ~ > 1 to co 2 -- 2. In 

accordance with this, the period of oscillations T -- 2~/oJ in the asymptotics is equal to T = d-l-0 ~ / 3  = 3.30 for 

e <  1 and t o T = v O ~ = 4 . 4 4 f o r c r >  1. 
The decay rate of the amplitude of mass flow oscillations ~' in the general case is dictated by expression 

(27); assuming d' = 0 in this expression at the final stage of decay we write for the amplitude exponent 

t dq '  [_52 R(_~A 3)  (34) 
fl q'  = "q'dt cr~ + 5qaR ~ 1 . 

Analysis of expression (34) shows that in the vicinity of cr = 1 the exponent fl~' is negative and reduces to 

- 1 at a - 1. The negative character of fl~' does not contradict the physical meaning, though it means an unlimited 

growth of oscillation amplitude for ~'. Thus, the same exponent for functions Q and Q / E  is positive in all cases. 

Since oscillations of E are small compared to the mean value of E, we write approximately ~-- Q t / E ,  from which 

it follows that 
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_ t d ~ ' =  _ t d Q ' +  t d E _  1 ,  

fl q'  = q ' d t  Q.'dt E d t  

,aO = ; _ , +  1. , + B e  + 1 ,  / e  q 

(as) 

In Fig. 2 the dependences,  calculated from (34), (35), and  (29), of the degrees  of the decay  rate  of the 

ampli tude of oscillation of the corresponding functions on the molecular  Prandt l  n u m b e r  a a re  also constructed.  

This  figure also presents  the calculated exponent  for Q, which is equal to ~ 2  =" fl + f ie  + 1 when a < 1 and  flQ ,= 

f ie  + 1 when a > I. The  ampli tude of oscillations of turbulent  mass  flow Q decays  more  rapidly  than  the mean  

value of Q in the case of water  with ~ -- 800, and  more slowly than Q for air  with a =, 0.73. Consequent ly ,  at  the 

final stage of decay on the graph of the simusoidal dependence Q(r)  there should exist a component  which is 

noticeable compared  to the ampli tude and  which changes slowly and  therefore resembles  a constant .  For air,  this 

component  should be practically insignificant. In numerical  calculation, the opposite si tuation is observed (Fig. 22 

from [1 ]). 

The  convergence noted in [ 1 ] of the ratio of kinetic energy of velocity vertical fluctuations K to the potential  

energy of the densi ty  field t~ on unity (as in the given analysis) is a confirmation of the fact that  in the case of air  

with a < 1 the mean value of q decays more rapidly than ~'for r -) 0o .  This  means a complete transi t ion of turbulence 

to internal  waves. In the case of water  with a > 1 the calculated value of the limit is lira K/t~ = 1 /5 ,  and this must  

correspond to the presence of a constant  component  in the graph Q(r) .  ~-~| 

We now direct our  at tention to the case set that  was denoted as A1 and corresponds to the Prandt l  n u mb e r  

a = 1. Here  qA = O, R A = R| = 1, OA = K a / ( 1  - KA),  and the value of KA is undetermined.  The  analysis  of this 

degenerate  case is somewhat  more cumbersome than that of cases A2 and B. The  asymptot ic  quanti ty KA is, for 

example,  capable  of taking the values 0, 1/3 and  9/10.  Other  versions are possible with the exponent  fl varying 

with KA. A selection among all these versions can be made by the criterion of continuity of fl variat ion with the 

Prandt l  number .  It is seen from Fig. 2 that  a zero value offl  is natural  for a = 1. This  corresponds  to the degenera te  

solution of sys tem (35) 

(a6) 

i , r t 

i l K = f i R  = , B • = f l q = 0 ,  f l d = 3 / 4 ,  q = R  = O  = K  = 0  

K A = 1 /3 ,  qA = 0, OA = 1/2 ,  R A = 1,  

for which total isotropy of turbulence is the final state. 

Discussion and  conclusions. In the analysis  of the final stage of turbulence decay we conf i rmed analyt ical ly 

the convergence of the functions K and R on different limits for c~ < 1 and t7 > 1, which was previously noted in 

[1 ], and  calculated these limits as functions of the molecular Prandt l  number.  

Three  cases are distinguished, A1, A2, and  B, which differ in the asymptot ic  values of the ratio K, 1/3,  

0, and  4 /5 ,  and of all o ther  functions. These  asymptot ic  values are  given by expressions (9)-(12) .  The  rate  of 

convergence of the solution on these asymptotes  in the form of (7) is studied. On the basis of this analysis  we 

concluded that  case A2 corresponds to a < 1, case B to o > 1, and case A1 to c~ = 1. Cases A2 and  B split into two 

asymptot ic  branches  each: A2a, A2b and B1, B2 with different rates of convergence on the asymptot ic  limits. The  

transit ion from branch A2a to branch A2b takes place at tTtt = 0 . i3 ,  as the Prandtl  number  increases f rom zero to 

unity. The  rate  of convergence for range A2a is equal to - 3 / 4  for all the functions, and  the coefficients of the 

exponents  in (7) are given by expressions (16)-(17).  For branch A2b, these values are calculated from formulas 

(18) and (21), respectively. 

The  transit ion from branch B1 to branch B2 of case B occurs at ~t2 -- 1.7, as the Prandt l  n u m b e r  increases 

from unity to c7 >> 1. The  exponent  in (7) for these two branches is calculated based on (24) and  (26), and  the 

coefficients of the exponents ,  from (27) and (28), respectively. 

The  kinetic energy of turbulence in the case of densi ty-strat i f ied media with molecular  Prandt l  numbers  

cr < 1 and a > 1 decays  according to different exponential  laws. The  rate of decay is de te rmined  for r -- oo from 
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(29). When cr > 1 it decays much more slowly than in the isotropic case, due to the fact that a great portion of this 

energy is confined in regular oscillations with weak decay. 
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N O T A T I O N  

3, dimensionless time; p, density; U, flow velocity; M, grid cell size; e ffi Fr2; Fr ffi NBvM/U, Froude number; 

Nnv ffi [(gc~5)/(~dx2)11/2, Brunt-V~iis~ilJi number; r'ffi Fr.r;  Tu, dimensionless time scale of the velocity field; Tp, 
dimensionless time scale of the density field; t = eTa; R = Tu/Tp, ratio of time scales of velocity field and scalar 

field; E, dimensionless kinetic energy; R22,  vertical component of the tensor of velocity fluctuations; K = R22/E, 
portion of the energy of transverse oscillations in the kinetic energy of turbulence; Q, dimensionless turbulent 

transverse mass flow; q = eTpQ/E; O, dimensionless square of density fluctuations; 0 = eO/E; R,t = (SETuRe) L'2, 
turbulent Reynolds number; Re = UM/v, Reynolds number; a, molecular Prandtl number. 
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